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FOREWORD 

This report comprises the experimental portion of a two-part 
vibration study of a pressurized torus shell and was presented in 
part at the AIAA 5th Aerospace Sciences Meeting in New York, 
New York, January 23-26, 1967 (AIAA Paper No. 67-73). Part II 
of this study, which is given in NASA CR-885, contains the develop- 
ment and applications of a torus shell vibration analysis prepared 
by Atis A. Liepins of the Dynatech Corp., Cambridge, Massachusetts, 
under Contract No. NAS l-6632. 
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VIBRATION STUDY OF A PRESSURIZED TORUS SHELL 
Part I - Experimental Study 

By Peter F. Jordan 
Martin Company 

SUMMARY 

Results of a vibration test program performed on a 54-inch (1.4 m) diameter com- 
plete circular torus shell are reported. The fundamental frequency response of both 
the free and the rigidly held model agreed well with analytical predictions. Correlation 
of the higher frequency modal responses by means of results of cylindrical shell analy- 
sis was successful in general, though pneumatic resonances of the air inside the model 
also played a considerable role. Significant was the occurrence of nonclassical modes, 
of a high degree of symmetry and evidently not due to model imperfections. 

INTRODUCTION 

The problem of the static analysis of thin-walled, pressurized toroidal shell con- 
figurations can be considered resolved in principle. A static test program, reported in 
ref. 1, confirmed the validity of an asymptotic form of this analysis. This asymptotic 
analysis, though it is unexpectedly compact, is nevertheless sufficiently accurate for 
engineering purposes in the parameter range of most space type applications, and 
proved useful also in the present shell vibration program. 

Regarding the dynamic problem of the response of a torus shell to vibratory excita- 
tion, a sizeable set of numerical analysis results has been presented by Liepins in refs. 
2 and 3, and some interpolative relations, derived from asymptotic static analysis, have 
been given by Jordan in ref. 4. The purpose of the investigation presented here was to 
obtain experimental evidence and to relate the experimental results to analytical pre- 
dictions as far as this was readily feasible without, however, taking recourse to per- 
forming actual shell vibration analyses. 

The structural model that we used in this experimental investigation was the com- 
plete circular torus shell which we had manufactured for the static testing program 
(ref. 1) and had used therein. By looking briefly at Figures 1 through 6, the reader 
will obtain a survey of model parameters, model design, and test arrangement for the 
present program. 

The model was tested under two basic supporting conditions, “fixed” and “free”. In 
the former, it was held rigidly, supposedly, along its outer circumference; in the latter, 
it was carried by a soft suspension to its hub. Primary pressurization levels selected 
were p = 0* (the unpressurized shell), p = 6 (shell bending stiffness and stiffness due to 
*For brevity, a given internal pressurization level p is described simply by a number 

in the text of this report. This number gives the difference between internal air 

pressure and external air pressure in lb/in. 2. Translation into kg/cm 2 is given in 
Table IL Similarly, all frequencies are denoted by numbers only; for example, f = 140 
means a frequency of 140 cps = 140 Hz. 



pressure about equal) and p = 15 (the model behavior under a static load approaches that 
of a pressurized membrane shell). 

In a number of respects, our undertaking corresponded to the investigation of a 
pressurized cylindrical shell that is reported in ref. 5; indeed, a cylindrical shell is a 
torus shell having the opening ratio a = w . A fairly straightforward test procedure had 
been visualized for our program: resonances would be excited, the nodal pattern of 
each would be made visible by means of semi-sticking powder and the vibration mode 
would thus be identified, simply by counting, in a manner corresponding to that used in 
the case of cylindrical shells, the number of meridional nodes (nodes that form a 
meridional circle) and of circumferential nodes (nodes that form a circle around the 
torus axis). Finally, the meridional modal shape would be determined in detail for a 
few of the lowest modes . 

Certain complications were expected, of course. There would be split modes*, and it 
would be necessary to experiment with the excitation arrangement to determine effects 
of exciter location and type. The complications that actually arose went far beyond 
those expected. There were none with regard to the fundamental mode, which had both 
the frequency and the modal shape that was predicted by the asymptotic static analysis. 
However, the spectrum beyond the second analytically predicted overtone, which was 
the first observed overtone, was quite crowded; in some modes the nodal lines had a 
pronounced tendency to deviate from the expected “classical” nodal pattern of two sets 
of complete circles; there was often a continuous shift of the phase angle of the shell 
vibration along the shell and no proper nodal line ; furthermore, there were often rela- 
tively large amplitudes of harmonic (usually in the next higher octave) motions. In con- 
sequence, it sometimes became difficult or impossible to identify the individual modes. 

This was first observed with the “fixed” model. Noting that variations of neither 
exciter location nor direction helped and noting further that the model supporting fixture, 
Figure 4, was not, in effect, as rigid as it had been supposed to be (it took part in the 
vibration to a considerable degree) we next changed over to the “free” model. This 
did not eliminate all sources of concern, but it helped to clarify them. It eliminated a 
rather undefined source of resonances but, of course, added torus modes proper that 
had been suppressed on the llfixedtl model. It eliminated most of the previous response 
in higher harmonics. It did not eliminate the nonclassical modes but rather proved them 
to be an inherent property of the torus shell configuration. It did not eliminate the an- 
noying phase shifts, and may even have increased them; however, the occurrence of 
large resonance responses where the torus shell oscillated, as an (almost) rigid body, 
against the stiffness produced by a pneumatic resonance of the air inside the torus shell, 
gave a hint that some of the observed phase shifts may have been produced by pneumatic 
coupling. 

There were thus two unexpected phenomena: nonclassical modes and pneumatic 
modes. There were, apart from these, sufficiently clean overtone modes that had to 
be related to the analysis of a shell vibrating in a vacuum. It became apparent, however, 
that an insufficient number of specific analytical results (ref. 3) was available for this 
purpose, and a different approach was tried, namely, correlation to cylindrical shell 
vibration analysis. The ordering principle that was devised for this purpose turned out 
to be satisfactory. 

*Due to an imperfection of the model, a resonance mode of the ideal model may be 
split into two modes having slightly different frequencies. Compare, e. g. , ref. 6. 



In this paper, the test program is first described. Next, analysis procedure and 
results are given for the fundamental mode. A discussion of the nature of torus shell 
overtone modes follows, a listing of Liepins’ applicable results (ref. 3)) and a deriva- 
tion of the correlation to cylindrical shells. The next section is concerned with the 
pneumatic modes. On this basis, finally, our test results for shell overtone modes are 
discussed: first the first overtone mode, which has some interesting features of its 
own, then the frequency spectra, the photographic records, the modal deflections 
measured, and the detailed correlations to cylindrical shell vibration analysis and to 
predictions of internal pneumatic resonances. 

It should be stressed that the present investigation, insofar as it led to unexpected 
observations, brought up a number of most interesting questions which could not, how- 
ever, have been resolved to satisfaction during this program. Neither was the test set- 
up planned for this purpose, nor was the test time available. In these respects, our 
effort has to be considered as exploratory, and some of our conclusions as preliminary. 
Indeed, the present report represents a selection, necessary but sometimes difficult to 
make, from what seemed at times an overabundance of not always easily reconcilable 
bits of test information. Recommendations for further research are made in the con- 
cluding section. 

TEST PROGRAM 

The Model 

The model that we used in our vibration test program was a complete circular torus 
shell. In Figure 1 some of the notation to be used is indicated, and also the static load 
system P under which the same model had been tested previously (ref. 1). (The then 
statically measured stiffness, S, was used to predict fundamental vibration frequencies; 
see below .) Model dimensions and manufacturing technique are indicated in Figure 2. 
The model was explosively formed from preforms welded from 2219-O bare aluminum; 
Figure 2 shows the lower half before explosive forming. Figure 3 is a top view 
schematic, showing all the weld lines and also the positions of the ports, short 
lengths of tubing, for pressurization and for strain gage leads. Note, Figure 2, that the 
inner part of the model had been strengthened, as required by the pressurization 
stresses, and that the center (hub) of the torus shape proper had been closed. Upper 
and lower hub cups were held together by bolt and washers. Also, the weld connection 
along the outer circumference, Figure 1, incorporated an additional sheet metal ring 
inside the model. 

Table I gives the average values of the model parameters that were used in the 
analyses. The thickness hR is that of the unstrengthened part of the model (to be exact, 
hR is the mean of the thicknesses that were measured along the two crowns*). Note 
that the opening ratio a (see Figure 1) is fairly small, making our model correspond 
more to a booster tank than to a space station. 

Figure 2 also indicates the cylindrical structure that held the model in its “fixed” 
position. This support is shown in Figure 4. The cylinder had been formed from 3/8 inch 
(9.5 mm) steel plate; the ring at its top was 27/16 inch (43 mm) wide and 23/16 inch 
(37 mm) high. Connection to the model was provided via 100 T-shaped lugs, well visible 
in Figures 4 and 5; hard rubber plates had been cemented between lugs and model. 

*After explosive forming. 
the thickness distribution. 

There was no recognizable effect of explosive forming on 



The model had been instrumented with strain gages along the meridian 6 = 0’ , 
Figures 2 Co 4. 

Model weights are given below in the section on fundamental modes. In some 
“fixed” tests, a heavy weight, about doubling the effective model mass, was attached 
to the model hub. 

For the tests with the “free” model, the T-shaped lugs were taken off, but the model 
was left in about its previous position, as can be seen in most of the photographs, 
Figure 16. It was then carried by a soft rubber cord to its center, also visible in 
Figure 16. In this condition, all its suspension frequencies were around f = 1, while 
the lowest fundamental model frequency was f = 24. 

Test Procedure 

Figure 4 shows the overall test setup. The electrodynamic shaker, better visible 
in Figure 5, was attached to the shell through a light weight forcing bar, bonded to the 
shell surface with dental cement. The main shaker positions tried were: vertical 
at the hub for the fundamental modes; excitation directly at the crown (+ = O” or 180°, 
Figure 1) or 9’ outside it, usually at 6 = 180° around the circumference, Figure 3, in 
the “free” condition at the lower crown in order to minimize distortions on the 
top half of the shell, where observation was easiest, but at the upper crown in the 
“fixed” condition where excitation from the lower crown did not readily reach the top 
half shell, in particular at higher frequencies. Horizontal excitation at the outer cir- 
cumference was tried; this attempt to bring out symmetrical modes was not very 
successful because of the smallness of the local modal amplitudes. 

The shaker force applied was of the order & 2.2 lb (1 kg) and was nearly 
always directed normal to the shell. During the test program, the bending stiffness of 
the forcing bar was considerably reduced by making two pairs of deep notches in order 
to eliminate possible distorting inputs. No effect of this weakening was found. 

The model response (rms) was recorded as a function of frequency (spectrum plots) 
in terms of the output of either the distance detector, Figure 5, one of the strain gages, 
or the pressure transducer (which had been installed close to the model and connected 
to the internal pressurization tube). The upper limit of a frequency sweep was usually 
1000 cps (Hz). Sweeping was done at the rate of 4.5 min per octave. Reducing the rate 
further had no noticeable effect. 

The strain gages were also monitored in order not to overtax the model strength. 
This, however, was not a real problem. Rather, the sound level as such and the fact 
that sound distortions tended to occur, usually suddenly, when the amplitude was in- 
creased, set a practical limit for the applicable excitation force. 

With all frequencies of interest in the audible range, the human ear was a very use- 
ful tool, both as an indicator of the overall magnitude of a given resonance amplitude, 
for which the output of an individual pick-up is a rather poor measure, and as an indi- 
cator of occurrence and source of distortions. This source was sometimes one of the 
port tubes, Figure 3, starting a vibration of its own. 
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The maximum amplitude of the shell at a representative overtone vibration was of 
the order f 0.002 inch (0.05 mm). 

After a frequency sweep had been made, individual resonances were investigated. 
A hand-held probe, with its output shown on an oscilloscope, allowed us to find nodal 
lines, phase shifts and harmonic distortions of the shell motion with respect to the 
excitation force (shaker current). In theory, it could also be used, by determining the 
phase relations between upper half shell and lower half shell, to interpret a given reso- 
nance as either symmetric* or antisymmetric. In practice, this was not always possi- 
ble; often, for reasons explained below in the discussion of overtone modes, the lower 
half shell did not have a simultaneous equivalent resonance, but had instead a much 
smaller response, or a different type of response pattern, or large phase shifts, etc. 

The nodal pattern on the top half shell was made visible by means of a semi-sticky 
powder**. We used a mixture of 80/o (by volume) magnesium stearate and 92% ecco- 
spheres. This powder showed up nodal lines, even on the vertical parts of the shell 
surface; a sample application is seen in Figure 4. Of course, effectiveness of this visual- 
ization requires a minimum of vibratory acceleration of the shell. The minimum fre- 
quency where this acceleration was present in the crown region was about f = 400; the 
steep parts of the shell slopes, with their relatively small amplitudes, required higher 
frequencies. Furthermore, in the case of modes where there was a continuous phase 
shift through 90° along the surface but no proper node, the powder became useless 
(while the hand held probe remained of limited useability). 

In addition to taking photographs of the visible nodal pattern, notes were taken of 
observations relevant for the interpretation of the given resonance, e. g. , amount of 
phase shifts, higher harmonics and distortions in the response, approximate meridional 
positions of the circumferential nodal lines, irregularities of the nodal pattern, and 
type of response of the lower half shell. Finally, if the given resonant mode was of 
sufficient cleanliness and of sufficient interest, the modal deflections were measured 
along a suitable meridian. This was done in particular for the lower frequency modes. 
The distance detector was moved along its supporting half circular arc, Figure 5, and 
readings were taken at 5O intervals in+. 

The test program did not, however, proceed as routinely as this description would 
seem to indicate. The unexpected observations already mentioned required a good deal 
of exploratory effort that is not here reported in detail. We list however, numbers of 
records taken: 164 spectra, 88 photographs of nodal patterns, 68 modal deflection 
readings along a meridian, 98 readings of all strain gages. Many of these records were 
more or less duplications made in order to check repeatability, which was generally 
good, or effects of minor changes in the excitation, or whether a resonance might have 
been missed. Only a minority of these records are reproduced in this report. 

Instrumentation 

Much of the instrumentation that was used in the test program is visible in Figure 4. 
Figure 6 is a block diagram with all instrumentation items indicated. Details of each 
item are given in the Appendix to this report. 

*With respect to the horizontal center plane. Symmetry around the circumference is 
denoted by axisymmetry. 

**A technique described in ref. 6. 



FUNDAMENTAL MODE, DISCUSSION AND RESULTS 

Descriptive Discussion 

The fundamental vibration mode of a structure is usually not much different from a 
suitable static deflection curve. Owing to this observation, it is usually possible to ob- 
tain a good approximation to the fundamental frequency f. from static results only, 

without going into a vibration analysis as such. The only required dynamic relation is 
the Rayleigh quotient; the minimum property of this quotient enhances the accuracy of 
the frequency prediction. 

A torus shell is particularly well suited for an application of this principle if its wall 
thickness ratio, h, is sufficiently small, its opening ratio, a, not too large, and its in- 
ternal pressure, p, not too large in relation to h and a; in other words, if the number k 
(see below) is sufficiently large (as it is in the case of our model). Consider the torus 
loaded axially by the axisymmetric system of static forces P acting at the inner and 
the outer circumferences, Figure 1. The overall shell deflection will be as indicated 
schematically in Figure 1, but most of the actual shell deformation will occur near the 
two crowns, in regions the width of which is roughly 4R/k; the remaining parts of the 
shell, its inner part and its outer part, will deflect as comparatively rigid structures. 
(In the theoretical limit k+ 00, the only shell deformation is a step deformation at each 
one of the two crowns .) Now the fundamental vibration mode of this torus shell is of 
the same axisymmetric-antisymmetric type, with the inner and the outer shell moving 
in opposite directions and the respective mass forces providing the force system cor- 
responding to the static force system P. Accordingly, one would expect the fundamental 
mode to resemble the static deflection just described. 

An illustration of this is Figure 7, the meridional shapes of axisymmetric vibration 
modes that were obtained analytically by Liepins (ref. 3). The first antisymmetric 
mode is the fundamental mode here under discussion. For a = 1.33, the number k is 
fairly high, k = 6.1, and accordingly the shell deformation is concentrated in a fairly 
narrow crown region, with inner shell and outer shell keeping their circular meridional 
shapes . In the case a = 10, where k = 3.1, the width of the crown region has about 
doubled, and hardly any undeformed inner and outer shell parts are left. 

As k increases, the percentage of the total shell mass that forms the almost-rigid 
inner and outer parts of the shell increases; accordingly, the more closely should the 
fundamental mode resemble the static (under the load system P) deflection curve. 

The static analysis of ref. 1 is called “asymptotic” because it becomes asymptoti- 
cally correct as k-c m ; it again involves simplifications which are better justified with 
increasing values of k. This asymptotic analysis predicts that the vertical part of the 
static shell deflection has the form ac(5 k) + b with a and b constants, and the function 
c( 5 k) given by 

x 
.c(x) = J 1 - X T1 (;;,I & 

0 

(1) 
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The coordinate f = sin + extends from E = -1 at the inner circumference to E = +l at the 
outer circumference ;. F= 0 at the crowns (Figure 1). The function Ti (x) is the basic 
antisymmetric solution of the asymptotic torus shell equation. (It follows that c(x) is 
also an odd function of x. ) 

According to Eq (1)) the number k is simply a scaling factor; the function c(x) does 
not itself depend directly upon k. (To be exact, the functions Ti (x) and c(x) depend 

slightly upon the transition parameter p*, see below. However, this dependency is 
negligible in the present context. ) 

Let W. be the vertical deflection part of the fundamental vibration mode. From the 
above, it follows that LVo should closely resemble c(x) if k is sufficiently large. As 

reported in ref. 4, this expectation was excellently confirmed by comparing detailed 
numerical results of the two analyses, refs. 1 and 3. Also, it was shown in ref. 4 that 
insertion of results of the asymptotic static analysis into the Rayleigh quotient led to 
good agreement, over a wide range of shell parameters, with fundamental vibration 
frequencies predicted by the vibration analysis of ref. 3 . Here we describe the 
application of the same (quasi-static asymptotic) procedure to the test conditions of our 
torus model and compare the analytical results with the test results. 

Determination of k 

The shell parameters are combined in the two numbers A and B. Of these, 

AEE2=p2 
0 Eh (e. is the prestress parameter) (2) 

represents the pressure stiffness, while 

B = (a hj2 
12 (1 -d) 

(3) 

represents the bending stiffness. In the case A = 0 (the unpressurized torus) the scaling 

relation is k6 - l/B; in the other limit, B = 0, the pressurized membrane torus, k4- 
l/A. In order to give k a unified mechanical meaning, independent of the relative 
magnitude of A and B, a normalization of the basic solution of the shell equation is 
introduced (ref. 1). This leads to 

k= n(rp*) 
(z’2 -I- 4B)1’6 

(4) 

with P * being the “transition parameter” 

7 



p* = A 

( A312 213 
(5) 

+ 4B) 

The function n(p*) is given in Figure 8t. 

The numerical values for P* and k that arise from these relations with the average 
parameter values for our model, Table I, and the test values for the pressure p are 
given in Table II. 

Deflections 

For those test pressures p for which static test data are available (ref. 1) the stiff- 
ness S of the model with respect to the static load system P (Figure 1) is given in 
Table II. This stiffness is more than doubled when p = 15. The relative role of the 
pressure stiffness is even more pronounced than S would indicate because the contribu- 
tion of the bending stiffness to S is not constant but decreases as p increases++. The 
point where the two stiffnesses play equivalent roles--the middle of the transition range 
which to a degree is a matter of definition--is reached already when p zz 6.3, r3* z .25, 
or slightly higher. When p = 15, the pressure stiffness definitely predominates, which 
means that the shell behaves much like a membrane. 

In Figures 9a and 9b, the measured modal deflections in the fundamental vibration 
mode are related to the analytical function c(x). The deflections w. ($I) normal to 

the shell were measured, and the numbers 

ii0 (x) =iTo (k sin&) = C 
w. W) 

0 cos$ -- ‘Cl (6) 

are plotted, with constants Co and C, determined for each test condition to fit the flat 

parts of the analytical curve, away from the crown x = 0. In this manner, a direct 
comparison between predicted and measured crown deformations is obtained. 

Both for the “free” model, Figure 9a, and the “fixed” model, with and without hub 
weight, Figure 9b, the agreement is entirely satisfactory. There is a slight shift of 
the experimental points to the’ right in all cases, indicating that the effective crown 
point of the model is slightly outside the nominal crown; this was already observed in 
the static tests with this model (ref. 1, Figure 12). Apart from this shift, the agree- 
ment between simplified (asymptotic) analysis and tests is well within testing accuracy 
for all test conditions and, in particular, for all pressures. 

Note that curves drawn through the test points in Figure 9 would have different 
slopes, due to the increase of the stiffness S with p, if these points were plotted over 
sin+ ; the scaling factor k serves to make all slopes equal. Also, the wall thickness of 
the model is increased by 50% to the left of x z -3.5 (depending upon k) in Figure 9, 
while the asymptotic analysis assumes a shell of uniform wall thickness. No effect of 
this discrepancy is apparent in Figure 9. 

t In the notation of ref. 1 
- 312 

n (P*) = (A + 4B) 03 

ttSee, e.g. , ref. 1 Eq (38) 
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Frequencies 

Analytical predictions for the fundamental frequency f. were calculated by means of 

the Rayleigh quotient 

f; = S 

4T2 %!ff 
(7) 

where the effective mass Meff is the integral over all mass points, multiplied with the 
square of their relative amplitudes. 

We considered only vertical amplitudes Eo in our analysis. We had to have unit 

relative amplitude between inner and outer torus circumference; thus 

2iqo (5) = $-g - 6 (8) 

with 6 a constant depending upon the configuration tested. The model mass we allocated 
to a uniform wall thickness torus, for which 

dM=fi. %=44shR’p a+f de vi-~2 ; (p = mass density) (9) 

and to two concentrated mass rings, M+ and M- , along outer and inner circumference, 
respectively. This led to 

4 Meff = (1 -S)2M+ + (1 +Q2M- + {ab (1 +62) -F]-46(1 -G)}% 

where 
1 

F = F(k) = --?-- 
s c2 (4 I-J 

c2 (k) - c2 (kE) dE 

h-7 

(10) 

G = G(k) = & 

The constant 6 is determined by the equilibrium condition of the moving masses 

6= M+- M- +2%(1-G) 

M++M- +ar% 

in the “free” case, while 6 = 1 in the “fixed” case . 



The mass values that we used are given next in terms of lb weight (mass times g; 
1 lb = 454 gram) 

aafi M” M- Total 

“free” 46.23 4.17 26.44 76.84 

trfixed”, no hub weight 46.23 4.17 25.35 75.75 

“fixed” with hub weight 46.23 4.17 64.10 114.50 

The numbers F and G were calculated to be 

P k F(k) G(k) 

0 7.38 0.210 0.0012 

6 6.96 0.226 0.0018 

15 6.50 0.249 0.0023 

The frequencies f, that resulted are given as f, talc in Table II. The measured fre- 

quencies f, test are given in the same table, and also the differences 

-Disregarding the test value for p = 15 in the “free” case, which would appear to be 
a reading error, all values Af, are positive. One reason is that the horizontal 

components of the shell vibration have been neglected in our simplified analysis. 
Another reason is the (slightly) outside position of the effective crown which is indicated 
by Figure 9. The larger differences in the “fixed” case are presumably due to the fact 
that the supporting structure was not absolutely rigid, see Figure 12d. 

Overall, the agreement between test and simplified analysis is as good as could 
be expected. 

DISCUSSION OF OVERTONE MODES 

General 

Because the torus shell is flexible in the crown region but relatively rigid away from 
the crown (as was illustrated by Figure 9), there is a basic difference between the 
fundamental vibration mode and the overtone modes. In the former, the relatively 
heavy inner and outer parts of the shell move in opposite directions, with the flexible 
crown region acting as the connecting spring. Thus a low frequency f, results. The 

overtone modes are either vibrations of the connecting spring alone, with inner and 
outer shell parts remaining almost undisturbed, or, where (at least) the outer part 
does take part in the motion, it has to deform and, therefore, its considerable stiffness 
gets involved. In either case, the expected frequency is considerably higher than the 
fundamental frequency f o. 

An illustration of this are the axisymmetric vibration modes, Figure 7. Here 
a = 1.33 corresponds closely to our test model, while the thickness ratio h is 
almost twice that of our model. The frequency parameter X is 

10 



h =$ (2 n a R f)2 (11) 

For the parameter values of our model, Table I , 

f =203ofi (12) 

Axisymmetric modes we denote by m = 0; in these modes, all nodal lines are cir- 
cumferential circles. In addition we expect nonaxisymmetric modes, with some num- 
ber, m, of additional nodal lines that form meridional circles. On a complete circular 
torus shell, the number of circumferential modes is m/2, and therefore m is always 
even. 

In the case of a cylindrical shell, we would uniquely identify a given mode by two 
numbers, m and the number, say 2N, of circumferential nodal circles. Figure 7 
illustrates several complications that arise in the case of the torus shell. Here N 
should be the number of zeros along the upper half, say, of the meridional circle. But 
neither does N always stay constant for a given mode when a is varied (example: third 
symmetric mode) nor is N always clearly defined. In particular when a = 1.33, dis- 
appearance of modal deflection may either indicate a genuine circumferential node or 
simply disappearance of modal deflection. In a test program it will not always be easy 
to decide which it is; nor does it matter very much. Figures 15c and d show two sets 
of measured meridional modal shapes with a good deal of similarly within each set. 
Some modes have zeros around + = 35’, others do not. Obviously this is not their 
major characteristic. In consequence, little use will be made of N in this report. 

There are other difficulties that are also, to some extent, already illustrated by the 
a = 1.33 modes in Fig. 7. The effective suppression, by the rigidity of inner and outer 
shell parts, of signals between the upper and the lower crown regions has the result 
that, looking at one crown only, there is often little distinction between symmetric and 
antisymmetric modes. This effect, seen, for example, in the respective h values, 
0.138 and 0.137, for the two second modes, is more pronounced for thinner shells (e.g. , 
our model). Alternatively, as upper and lower halves of an actual test model are always 
slightly different, the resonance frequencies of the two half models will not always 
coincide, and it will therefore be difficult or impossible to identify a given mode as 
either symmetric or antisymmetric. 

A third effect, which again is more pronounced for thinner shells, is that there is 
a tendency for pairs of modes to form, say a pair of symmetric modes, where the one 
is almost the mirror shape of the other (ref. 3)) reflected at the axis c = 0. Taking 
the second and the third effect together, there is thus already for the ideal torus shell 
a tendency to form clusters of four axisymmetric modes with frequencies close to- 
gether. In the case of Figure 7, we have three frequencies (h = 0.130; 0.137 ; 0.138) 
with a total spread of 396, and the fourth (A = 0.155) only 10% off. Adding to this the 
fact that there will be nonaxisymmetric modes, adding further the expectancy that split 
modes will form on any actual model, both due to differences between the two half 
shells and due to deviations from axisymmetry, and considering finally that the air 
inside the torus model will have its own pneumatic vibration modes, see below, we 
come to the conclusion that there will be a rather crowded vibration spectrum, the de- 
tails of which will be difficult to identify. Our test results confirmed this. 
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Liepins’ Frequency Results 

Figure 10 is a graphical correlation, in the prestress (co) versus wall thickness (h) 

plane, between all parameter points for which Liepins (ref. 3) gives analytical results 
and the parameter points which correspond to our test conditions. The first three 
symmetric and the first three antisymmetric frequencies have been determined from 
Liepins’ A values for a = 1.33 by means of Eq (12) and are listed in Figure 10 next to 
the respective parameter points, the former in the left hand box, the latter in the right 
hand box. 

Liepins gives results for m = 0, 2 and 4*, all for a “free” torus shell of uniform 
wall thickness. Specifically, therefore, Liepins’ results for the fundamental mode are 
not directly applicable to our model with its additional masses; for this reason, a dash 
rather than a frequency appears for this mode in Figure 10. Indirectly, these specific 
results are well confirmed; as aforesaid, they agree with the Rayleigh quotient result 
(ref. 4), and agreement between the latter and our tests was shown in Table II. 

Confirmation of Liepins’ overtone mode results, Figure 10, is less readily obtain- 
able. To be sure, the additional masses on our model might be expected to play a 
relatively minor role in these modes; on the other hand, the number of available 
analytical points is somewhat limited. A proposed interpolation formula (ref. 4, 
Eq (9))is limited to z&symmetric modes, and even here it is not quite satisfactory. 
It starts from the assumption that, for a given mode, the width of the meridional 
modal shape is proportional to the nominal width 4R/k of the crown region; it was 
shown to be suitable for interpolation with respect to the opening ratio a but requires 
refinement for the case that either wall thickness parameter h or pressure parameter 
eo is varied. This situation, and the requirement for an extension to nonaxisymmetric 

modes, led us to develop the correlation to cylindrical shell vibrations that is dis- 
cussed in the next section. 

Correlation to Cylindrical Shell Vibrations 

The classical analysis of the vibration of thin-walled cylindrical shells assumes a 
system of two types of nodes : meridional circles equally spaced along the cylinder 
axis, and generatrices equally spaced along the meridian. Thus, the cylindrical shell 
is divided into equal ‘Vetangular” surface elements that are bounded by nodal lines. 
Each element is assumed to vibrate in a mode that is a sinusoidal half-wave in either 
direction. This set of assumptions leads to simple boundary conditions for the ele- 
ments. The analysis is simplified further by assuming the meridional angle A $ of the 
element to be so small that shallow shell theory can be applied. The frequency equa- 
tion that results for the case of a cylindrical shell, prestressed by an internal pressure 
p, is given in ref. 5. Let d = R A+ be the meridional arc of the element, and 1 its axial 
length. Then 

The first term on the right is the result of thin plate vibration analysis. The second 
term represents the stiffening due to curvature, the third term the stiffening due to 
prestress, 

*Liepins (ref. 3) denotes m/2 by n. 
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We intend to use Eq (13) as a basis for correlating our torus model test results. 
There are obvious difficulties. The fact that the straight nodal lines of the cylindrical 
shell are replaced by circumferential circles on the torus is the lesser of these; for a 
narrow, circular membrane ring, the fundamental frequency is the same as for a 
rectangular membrane of equal width and length, and it appears reasonable to assume 
that, given corresponding boundary conditions, a narrow nodal ring along the crown of 
a torus would be fairly well represented by an equally wide and long nodal strip of a 
cylindrical shell of equal meridional curvature. More important is that the boundary 
conditions are different. Away from the crowns, the torus has an additional form 
stiffness, Figure 9; further, the prestress due to pressure varies along the meridian. 
Consequently, the nodal spacing will vary along the meridian (compare Figure 7) the 
modal shape will not be strictly sinusoidal, and, therefore, the boundary conditions 
will be different and not simple. These reservations we have to keep in mind; on the 
other hand, Eq (13) is convenient enough to make a comparison worth trying. 

At the crowns of a torus shell, the prestress due to p roughly equals the prestress 
in the corresponding cylinder; thus, Eq (13) can be used directly. Setting 1 = 2amR/m 
and evaluating Eq (13) for the parameter value of our model and for fixed values of m, 
the curves drawn in Figures lla and lib were obtained. Shown is the frequency f over 
the elemental angle A+ given in degrees. Curves for all values of m are drawn for 
p = 0; a few’ curves (dashed) are drawn for p = 15. 

The most significant observation is that the curves for m > 4 have minima within 
Figure 11. For m given, the length of the elemental “rectangle” has a given value; if 
A+is small, the first right hand term in Eq (13) is large, that is, on a narrow “ret- 
tangle” the plate stiffness predominates. At the minimum of f, the second (curvature) 
term equals the first (if p = 0); one finds 

4a?rRf min = m @h/p) l/2 [3 (1 -“)I -l/4 Wa) 

The positions of all minima are shown in Figure 11 for p = 0, 6 and 15. They form 
a band across Figure 11, and it can be seen that the test points that are also plotted in 
Figure 11 tend to lie along this band. Intuitively, there is a good reason for this. 
Assume m given, and vibrate the shell at a given frequency f. This will determine se- 
quences of nodal rings, starting at the inner and the outer circumferences, with the 
width of each ring determined by its local stiffness parameters. It will be easiest for 
these sequences to fit together at the crowns if f is at its minimum, that is, if the A$ 
of the crown strip can be varied without varying f. 

This intuitive explanation does not, of course, establish a necessary condition for a 
resonance to occur. Also, if A+ is small enough (m large according to Figure 11) 
there will not be more or less a single wave at the crown but several waves and accord- 
ingly several circumferential nodal rings, see the last photographs in Figure 16. As 
each one of these rings has its own minimum frequency, the shell resonance frequency 
f will have to be somewhat higher than fmm. An experimental confirmation is the list 
that follows. 

m 
-- 
12 

14 
16 
18 

p=o 
-- 

p=6 

702 (49) 754 (52) 

820 (36) 871 (70) 
937 (53) 987 (-) 

1054 (-) 1104 (-) 

p = 15 

823 (42) 

940 (-) 
1055 (50) 
1173 (48) 

f (13b) 
min 

( f test - fmin 1 
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Listed are fmin and, by means of the differences given in brackets, the Iowest reso- 

nance frequency having a mode with the given value of m that we observed in our tests*. 
A dash means: no resonance observed (it should be stressed that the test observations 
had been made without the benefit of the analytical results). The list clearly indicates 
that the correlation principle used is basically sound: all differences are positive, and 
their magnitude is reasonably uniform. 

PNEUMATIC RESONANCES 

It had been realized while the test program was being planned that the acoustic wave- 
length of air would be, in the frequency range of interest, of the order of the model 
dimensions. The pressure transducer, connected with the inside of the model, had been 
provided accordingly; however, this was done out of curosity rather than because inter- 
ference of pneumatic occurrences with the shell mechanical vibrations was expected**. 
Accordingly, a single transducer was installed at the most conveniently available loca- 
tion. A set of transducers, installed directly in the shell wall rather than alongside the 
pressurization tube, would have been a better tool for positive identification of pneumatic 
occurrences. Nevertheless, valuable indications were obtained with the installation as 
it was. 

In the description of observed pneumatic resonances that follows, the acoustics of 
the air inside a rigid infinite cylinder are used as an interpretation guide. 

With horizontal excitation (4 = 90°) a model resonance was observed at f = 140 
which turned out to be vibratory horizontal translation, with only very little shell de- 
formation. There was no structural spring available as an explanation for this occur- 
rence. The pressure transducer record, Figure 12a-1, exhibited a distinct narrow 
spike at this frequency. Corresponding spikes occurred at f = 420 = 3 x 140 and at 
f = 695z 5.x 140. 

Taking c, the speed of sound in air, at its average value***, Table I, and using the 
mean model circumference 2lraR as the wavelength, we arrived at f = 138. (The 
experimental readings varied between f = 139 and f = 142. Shaker location may have 
played a role. With p = 15, the slightly higher frequency f = 143 was read.) 

Everything indicated that the missing spring stiffness was being supplied by a 
pneumatic resonance, an acoustic vibration in circumferential direction of the inside 

*“Fixed” test condition. In the “free” condition, the tests had not been extended to 
sufficiently high frequencies. 

**No such effects are reported in ref. 5. On the other hand, Runyan et al. , ref. 7, 
report analysis and tests concerning coupled mechanical-pneumatic longitudinal 
vibrations of a thin walled cylindrical shell, fixed at one end and provided with a 
heavy bulkhead at the other end. 

***The testing laboratory was air conditioned. It had not been thought necessary to 
record the air temperature at a given test. Temperature variations will have 
occurred, in particular, when the model was pressurized or depressurized. 
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air, with m = 2, and the higher frequency spikes indicating resonances at m = 6 and 
m = 10, respectively*. To prove the point, part of the air inside the model was re- 
placed by helium. The model resonance at f = 140 disappeared as predicted. 

Pure helium would have about tripled the pneumatic resonance frequencies. The 
pressure record obtained with the helium-air mixture is shown in Figure 12a-2. The 
m = 2 and m = 6 spikes now appear at f = 253 and f = 761, respectively. 

In the m = 2 pneumatic mode, which presumably has nodes at and opposite the 
shaker, the center of mass of the air moves (mass of air inside model z mass of 
mode1/43) and mass equilibrium requires an opposite movement of the model. The 
air mass center remains stationary if m takes higher values; accordingly no model 
displacement spikes appear in Figures 12a-3 and 12a-4 at the frequencies of the respec- 
tive spikes in Figures 12a-1 and 12a-2. (There is also no model displacement spike at 
m = 2 (f = 253) in Figure 12a-4, perhaps because of the reduced mass of the inside gas.) 

The displacements recorded in Figures 12a-3 and 12a-4 are those opposite the 
shaker (0 = 225’). The sparseness of resonances indicates, as mentioned before, that 
the horizontal shaker arrangement was not very effective in exciting many model modes. 
One sees the first genuine overtone shell mode around f = 180 in both records, and 
again activity in the f = 600 to 700 range. Here are, in the case of air, a number of 
spikes in the pressure record, Figure 12a-1, which in the case of helium plus air, 
Figure 12a-2, have contracted to one. The respective displacement records, Figures 
12a-3 and 12a-4, are little affected by this but show noticeable differences, caused by 
the difference in the filling gases, in the range of higher frequencies. 

The inside air, apart from being able to vibrate circumferentially, can vibrate in 
the meridional plane. Acoustic theory predicts modes of the form 

radial air speed - cos n(+ - +,) . J;(27rfy/c) ( 14) 

where y is the meridional radius. At the shell, y = R, the Bessel function derivative 
has to have a zero. This determines the resonance frequencies. The zero with the 
smallest argument that is not itself zero occurs with n = 1 and leads to 

27rfR = 1.841 c (15) 

and thus to f = 346. 

Set +0= 0. The n = 1 pneumatic resonance then corresponds to vertical translatory 
vibration of the model as a whole. This model resonance was not found with shaking 
at the crown (presumably because of the large rocking moment of the shaker force) but 
was obtained with the shaker at + = 9’. Figures 12b-1 and 12b-2 show pressure record 
and displacement record, respectively; the measured frequency was f = 344 (slightly 
smaller in other tests; f = 347 for p = 15). 

Figure 15b shows the modal displacement that was measured along a meridian at 
f = 344. At this higher frequency, the model is no longer as rigid as it was at f = 140. 
The modal line has a wave in the crown region, but this wave is displaced from the 
zero line, so much so that it does not cross this line. There are, thus, no nodes ; 
*It is not clear why no spikes indicating m = 4,8 and 12 modes appear in Figures 

12a-1 and 12a-2. 
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none would-appear in a powder test, Figure 4. An occurrence of this type obviously 
contradicts the assumptions that we made above in our attempt to correlate toroidal and 
cylindrical shell vibrations. In particular, equilibrium is impossible without the addi- 
tion of a vibrating pressure force. The meridional pneumatic resonance mode pro- 
vides the explanation. Indeed, the observed shell mode was of the m = 0 type (m = 0 is 
assumed in the acoustic relation Eq (14)). 

Figure 15b also shows a similar occurrence at a much higher frequency, f = 886. 
Apart from the purely circumferential and the purely meridional modes, there will be 
coupled pneumatic modes. Not having available the appropriate acoustic solution for 
the toroidal chamber, we estimated the respective resonance frequencies by setting 

f2 = (71 m)2 + (340 i$ (16) 

with ii = j;, /jr1 , and the j’ the Bessel function zeros. The purely circumferential 

resonances arise from Eq (16) with Ii = 0, the purely meridional ones with m = 0. 

The two basic frequencies, f = 2 x 71 and f = 340, in Eq (16) were selected for best 
overall fit with observed pneumatic frequencies. To the modal deflection at f = 886 in 
Figure 15b, where m = 6, belongs the following result of Eq (16) : f = 885 for m = 6, 
n = 3. Resonances that are strongly indicated in the pressure records, Figure 12b-1 
(p = 0) and Figure 12c-1 (p = 15), are 

0 1 340 
2 1 368 
6 * 426 
2 2 582 

The complete lower part of the predicted pneumatic frequency spectrum is shown at 
the left of Figures lla and llb. In all cases where n is given as a number, j’ has its 
first nonzero value for this n; a * for n indicates a purely circumferential mode (n = 0, 
s = 1, that is, Ii = 0). At frequencies beyond those shown in Figure 11, higher order 
Bessel function zeros occur, with circular meridional nodal lines of the acoustic mode 
inside the shell. 

Considering the large number of possible pneumatic resonances, the diversity of 
pressure patterns that they encompass, the fact that $. in Eq (14) is a free parameter, 

there is thus a large multitude of possibilities for structural-pneumatic interactions to 
occur. To quote from ref. 7: Wructural responses due to acoustic (air) resonances at 
frequencies considerably different from the structural resonant frequencies are very 
narrow but still reach peaks close in magnitude to the structural response peak”. In 
consequence, interpretation of vibration tests with closed shell structures becomes in- 
volved. As a minimum, one should repeat all tests after putting a different gas inside 
the shell. In our program this was no longer possible at the time when the importance 
of pneumatic resonances became evident. 
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In particular, it would be of interest to explore the effect of a changeover to a 
different gas on the phase-shifts that were observed. As mentioned before, the phase 
of the local response amplitude often varied continuously along the model surface be- 
tween two response peaks, say from 0” to about 180”, with a smaller amplitude at the 
place of 90° phase shift but with no point of zero amplitude (node) along the path (there 
were also cases where some relative phase shift between peaks occurred but with a 
clean node in between). In other words, secondary motions were present. These phase 
shifts became increasingly pronounced with f increasing and, in particular, with p in- 
creasing. Compare with these observations the increase in displacement activity 
between Figures 12a-3 and 12a-4 (air versus helium) and also the increase in pressure 
activity between Figures 12c-1 and 12b-1 (p = 15 versus p = 0). 

OVERTONE MODES; TEST RESULTS 

The test results concerning the fundamental mode were presented earlier in this re- 
port. In the discussion of the nature of shell overtone modes and pneumatic modes that 
followed, some reference has already been made to experimental results. A more 
complete review, based on the preceding considerations, follows here. 

First Overtone Mode 

Figure 13 surveys the first three observed resonance frequencies of the “free” 
model as a function of the internal pressure p. Fundamental mode and m = 2 pneumatic 
mode have already been discussed. Around f = 200 occurs the first overtone mode, a 
symmetric m = 2 mode. 

From reviewing Figure 10, one would expect the first overtone mode to be an m = 4 

mode. Extracting the relation H - h for p = 0 from Eq (13a), one would expect a test 
frequency around f = 160 or f = 180 for this mode. This was not found. On the other 
hand, Eq (13a) yields fmin = 317 for h = 0.01 compared to Liepins result f = 210 for 

m = 4, and yields fmin = 234 for m = 4 and our test condition. This last value agrees 

well with the actually observed lowest m = 4 modes, see Figure lla. 

In the case of the first overtone mode, records were taken at Ap = 1.5 intervals. 
Figure 13 exhibits several peculiarities : a split mode, with two distinct frequencies; 
each frequency does not increase monotonically with p but peaks around p = 7.5. 

The meridional nodal line crossed (roughly) from 6 = 90° to 0 = -90° at the lower 
frequency, from 8 = O” to 8 = 180° at the higher frequency. The meridional modal 
shapes at the lower frequency and at three pressures p are shown in Figure 14. The 
corresponding modal shapes of the higher frequency split mode, not shown, were 
similar, except for some irregularity at p = 0 which disappeared with pressurization. 

Figure 14 shows the same three modal shapes twice, in polar and in rectangular 
coordinates. The polar plot demonstrates some similarity in particular of the p = 0 



mode -with-the first symmetric m = 0 mode, Figure 7, at the much larger opening 
ratio a = 6.7. Rectangular coordinates make it easier to compare modal bending 
curvatures . Test points are shown by symbols at 20’ intervals only; test readings 
were taken at 5’ intervals in +, and the curves connect all the test points. The same 
applies to Figure 15. 

In both figures, the overall amplitude of a given measured modal shape is adjusted 
by applying a suitable factor, so as to achieve some degree of uniformity. The factors 
are given in the figures. 

In the rectangular coordinate plot of Figure 14 the three maxima of deflection ampli- 
tude are made equal. The effect of increasing p, and thus of the pressure stiffness, is 
seen in the widening of the main crown wave and in the disappearance of the secondary 
wave around + = 20°. 

Resonance requires that the crown wave fits together with the modal deflections of 
outer and inner shell. It was not possible with our test arrangement to measure the 
latter beyond + = -55O. In the polar diagram, an attempt is made to draw (dashed part 
of the curves) possible modal deflections of this stiffest part of the shell. For p = 18, 
the deflection may have been practically zero, and therein may lie a partial explanation 
for the drop in resonance frequency. 

Curiously, a given mode was the more easily excited the lower its frequency. This 
is already seen from the factors in Figure 14, and more correctly from the number W 
that is also given, the relative shaker work input (per cycle) required for equal maxi- 
mum amplitude, computed taking into account the shell amplitude at the point of excita- 
tion. 

Clearly, a rigorous vibration analysis will be required to explain such observations 
quantitatively. The correlation Eq (13) presupposes a sequence of sinusoidal waves 
with A+ small and cannot be expected to represent the direct interaction with inner and 
outer shell that occurs in this low frequency range owing to A+ being large. Equation 
(13) gives, for m = 2, fmin = 117,162 and 204 at A$= 43’, 48’ and 53O for p = 0, 6 and 

15, respectively. That for the highest pressure p the measured frequency was below 
f min is heuristically justified by noting that, as the points of zero curvature of the 

crown wave were displaced below the zero line (Figure 14), the mass forces were 
larger, relatively, than Eq (13) assumes. 

On the “fixed” model, the first overtone mode was strongly affected by the restraint 
at 9= 90°. It was distorted: the two meridional nodes were at 8 = 45O and 180° on the 
upper half shell, at 6 = O” and 225O on the lower half shell. There were not, as in the 
“free” case, two resonances of about equal magnitude. Maximum amplitude frequencies 
occurred at f = 169, 184 and 161 for p = 0, 6 and 15, respectively. There were also 
secondary spikes in this frequency range. 

Frequency Spectra 

All the spectrum records shown in Figure 12 extend up to f = 1000; rms amplitudes 
are marked in dB, normalized to + 1 kg shaker force. Figures 12a, b-l and c-l have 
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already been referred to. Figures 12b-2 and 12b-3 compare two shaker positions, off 
crown (9 = go) and at the crown (9 = OO). Here, as always in Figures 12b and 12c, 
excitation was applied at the lower half shell, while response signals were taken from 
the upper half shell (except pressure signals). Both records are crowded but show 
considerable differences in most details. On the other hand, the strain gage record 
(strain in meridional direction), Figure 12b-4, has a good deal of similarity with Fig- 
ure 12b-3, the same shaker position but a different pick-up position. This is as ex- 
pected. Of course, while the displacement amplitudes decrease in the higher frequency 
range, the strain amplitudes gain in relative magnitude; this corresponds to the de- 
crease, with f increasing, of the wavelengths of the structural modes. 

Figures 12c-1 and 12c-2 correspond to Figures 12b-1 and 12b-2, with now p = 15. 
As mentioned before, the lower frequency pressure record spikes recur at p = 15, 
with more activity and higher peaks at higher frequencies. From comparing Figures 
12b-2 and 12b-3, one would expect to see more pressure activity in the highest fre- 
quency range had excitation been at the crown, atbothp =Oandp=15, butthese 
records had not been taken. There is, as expected, less agreement regarding fre- 
quencies between the two displacement records. However, certain peak activities 
occur at the same frequency on all four records, e. g. , around f = 340 (discussed above 
in connection with Figure 15b) or around f = 430 (to be discussed below). 

The relation between Figures 12c-2 and 12c-3, displacement and strain, respectively, 
corresponds to that between Figures 12b-3 and 12b-4. 

Finally, Figure 12d shows the lateral acceleration, in g, of one of the T-shaped 
support lugs, visible in Figures 4 and 5, that was supposed to hold the “fixed” model 
rigidly at its outer circumference. Excitation was applied at the model crown. It is 
obvious from this record that the support structure, while it was much stiffer than the 
cylindrical shell carrying a torus-shaped space booster tank would be, nevertheless 
did not approach the theoretical conditions of rigidity; rather, large coupling effects 
between model and support structure vibrations did occur. This explains the con- 
siderable harmonic distortions that we observed on the “fixed” model. 

Spectra of signals taken from the “fixed” model are not shown. These spectra are 
similarly crowded but are different, in most details, from the spectra taken with the 
“free” model. 

Photographic Records 

The photographic records, Figure 16, of nodal patterns made visible by means of 
semi-sticky powder are identified individually by f, p, model “free” or “fixed” (this 
is also easily recognized directly from the photographs) and shaker position, at or off 
the crown. The observed shell mode is interpreted by the number m that is given. 

In the photos, 9 = O” is in front. Little white markers are usually visible in par- 
ticularate=*90°, at+=O”, *20°, *too... 

The lines of white powder that indicate nodal lines are sharp and clear where there 
is a clean node separating regions of relatively large acceleration amplitude. They 
are blurred, or disappear altogether, where the node is less clean due to superposition 
of secondary motion (phase shift) or where the amplitude level is generally small. 



The photos are arranged in order of increasing resonance frequency f. They are 
next referred to in sequence. 

f = 438. About the lower limit for the powder technique of visualization. Note jagged 
meridional nodal line at about 6 = 450. Some phase shift and harmonic distortion 
observed. 

f = 489. An example of an m = 0 mode. 

f = 519, m = 6. Four meridional lines clear, two in back blurred by local phase shift. 

f = 523. A particularly clean mode, with very little phase shift. Note pair of circum- 
ferential nodes at 4 = 200 and, more blurred, 4 = 30°; compare the modal deflection, 
Figure 15~. 

f = 565. Corresponds to f = 523, but with p = 15. Again clean but no double nodal line. 

f = 592. This is the first of several modes that are denoted by m = 2-10. The pair of 
numbers for m indicates a nonclassical mode: there are in this case ten meridional 
lines at the inner shell but only two lines at the outer shell (at 9 = * 900). The remain- 
ing eight inner lines form loops, in pairs, that reach to about 9 = -2OO. The nodal 
pattern is quite symmetrical in itself and is arranged symmetrically with respect to the 
shaker position. Little phase shift observed; nodal lines, in particular also around 
loops, show proper nodes (zero amplitude). 

f = 606. Another m = 2-10 mode. Here the loops form four distinct almost circular 
eyes; the next circumferential nodal line, between $ = O” and 9 = -20°, is distorted 
into almost a hexagon. Ten inner nodal lines are seen to have equal distances between 
them below the I$ z -450 node. 

f = 610. The four eyes, less circular here than in the preceding photo, reach almost 
to + = 00. The two frequencies, f = 610 and f = 606, are quite close together. The 
displacement spectrum, Figure 12b-3 (same shaker position as in both photos) shows 
a single narrow spike at f = 610, no activity at f = 606. The explanation would appear 
to be that the two photos were records of one and the same mode, taken on different 
days ; that, while the principal characteristic of the mode, the appearance of four eyes, 
is reproducible, the meridional position of the eyes is not firmly fixed. In fact, an 
intermediate position of the eyes was observed with this mode on a third day. Also, 
the amount of phase shift that was observed on this mode did vary somewhat between 
different days, from “undetectable” to “slight”. 

Intuitively, it appears well believable that small causes should be able to change the 
position of the eyes. Such a cause might be a change in the temperature, and thus in 
the wave speed, of the air inside the model. The pressure record, Figure 12b-1, 
shows a distinct, though relatively small, spike at f = 610. This spike does not 
correspond to any one of the pneumatic resonances that are predicted by Eq (16). 

f = 612. A clean m = 8 mode on the “fixed” model. 

f = 644, Another m = 2-10 mode, with more phase shift. Cuter meridional nodal lines, 
8 = * 900, had relatively large secondary motion. 



f = 660. Preceding comments apply (note pneumatic activity in this f range, Figure 
12b- 1). 

f = 676. An unsymmetrical nodal pattern that we interpret as a distortion of an 
m = O-10 mode. In the recorded mode, a pair of meridional nodal lines, those at 
8 = f 18O, get through to the outer shell; outside this narrow range, however, the outer 
shell vibrates in an m = 0 mode. 

f = 705. Generally sharp lines, but interrupted by local secondary motions. 

f = 775. Two photos at the same frequency, p = 6 and p = 15. The first, m = 6, fairly 
clean, in spite of local interruptions that are visible. The second, m = 10, with con- 
siderable phase shift outside. 

f = 856. We have reached the range of high frequencies where the modes that came 
out clean enough to be recorded were usually of this type. A+ observed corresponds 
closely to its value- for minimum f in Eq (13). Refer to the list near the end of the 
section on correlation to cylindrical shell vibrations. 

f = 862. Same as preceding, except “free” model. Slightly higher f, more secondary 
motion. 

f = 990 (p = 0) and f = 1106 (p = 15). Correspond closely to each other. Similarity of 
irregularities in a number of shell surface locations. 

f = 1211. Highest resonance frequency for which a photographic record was taken. 

Remark on Nonclassical Modes 

Possible causes for the appearance, in vibration tests with thin-walled cylindrical 
and conical shells, of nonclassical modes (here generally modes that do not allow 
separation of variables) have been the subject of discussions in the literature. Recent 
contributions are those of Koval (ref. 6) and Mixson (ref. 8). Causes considered in- 
clude: the fact that the shaker input is localized in such tests; superposition of natural 
modes having closely spaced frequencies. In particular, if a model imperfection 
causes a split mode, with different node locations at the two frequencies (example: 
the first overtone mode of our model) then the superposition of the two modes that 
occurs in the intermediate frequency range can lead to “exotic nodal patterns” (ref. 6). 

The thinner the shell, the more likely this is to occur. In Koval’s tests (ref. 6), 
h = 0.0033, the cylindrical shell had a lap joint, an obvious cause for split modes. 
In Mixson’s tests (ref. 8)) conical frustrum shells, all mixed modes were eliminated 
by proper shaker positioning on the two shells, h = 0.0029 (based on mean radius) and 
h = 0.0015, that had clean butt welds. One nonclassical mode was observed with 
another shell, h = 0.0015, that had a lap joint, and numerous such modes were ob- 
served with the thinnest shell, h = 0.0008, which had both lap joints and local wrinkles. 

Our own torus shell model, h = 0.0055, had butt welds, with all excess material 
removed on the outside and little excess material at the inside. The model was well 
manufactured (though not perfect, ,as is demonstrated by the fact that the first over- 
tone mode was split). All observations pointed to the conclusions that the observed 
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nonclassical modes were genuine natural modes and that such modes are an inherent 
property of the torus shell configuration. Compare the discussion of the f = 610 mode 
in the preceding section. There was a nodal pattern of high regularity, relatively 
free from secondary motion, not affected by variation of the shaker position. There 
was a clean spike in the displacement spectrum record. Also, the same characteristic, 
many more. meridional nodes on the inner shell than on the outer shell, appeared at a 
number of frequencies. 

It should perhaps be stressed that the nodal pattern that was indicated by the powder 
lines was verified in detail. Everywhere the phase shifted over to its opposite on 
crossing a nodal line (one checks readily that the pattern does indeed allow one to 
allocate either + or - to each surface element in such a manner that a changeover oc- 
curs at each nodal line). On the other hand, the phase did not change, for example, 
between 8= + 90° and 6 = -90° along the circumferential strip, f = 606 in Figure 16, 
that is bordered by the hexagonal nodal line outside and is narrowed locally by the eyes 
inside; nor did the phase change along the corresponding, but even narrower (at the 
eyes) strip in the case f = 610. 

All the loops that we observed were positioned on the inner shell, in the range of 
negative Gaussian curvature. This may be significant. In a way it is unexpected: the 
hub of a torus shell is its stiffest part (already in the case of uniform wall thickness, 
and even more so if, as on our model, the shell is strengthened here). Apart from 
this, there is more area on the outer shell, and one would rather expect additional 
meridional nodes to form there (in the tests ref. 8 with conical frustrum shells all 
additional nodes formed at the wider end). 

We have, of course, to consider the possibility that any one m = 2-10 mode, say, 
might have been a mixed mode, a superposition of two classical modes; in this case, 
of an m = 2 mode and an m = 10 mode, the two modes having the same resonance 
frequency, and both having nodes at 9 = *90°. Figure 17 describes the types of nodal 
configurations that would arise from such a superposition, both in the neighborhood of 
a circumferential node of the m = 2 mode (A = 0) and of the m = 10 mode (B = 0). 
Attempting to reconcile Figure 17 with any one of the m = 2-10 modes of Figure 16, 
one comes to the conclusion that this requires an m = 2 mode having essentially zero 
amplitude inside the loops, combined with an m = 10 mode having essentially zero 
amplitude outside the crown. A slight tendency for larger amplitudes inside than out- 
side may be inferred from Figures 14 to 16, see in particular the m = 10, p = 0 mode 
Figure 16, f = 705. There is thus a certain, though not convincing, tendency toward the 
existence of the required m = 10 mode; the same argument makes the required 
m = 2 mode an even more unlikely occurrence. 

The final judgement has to come from a more detailed experimental and also an 
analytical investigation. Regarding the former, here is the place to add a remark on 
shaker effects. Mixson, ref. 8, shows remarkably large (and not fully explained) effects 
(frequency changes) due to changing over to an air jet shaker. While for completeness 
a similar comparison should be made on the torus shell, no serious effects are here 
expected: Mixson used his thinnest model (h = 0.008) and excited directly at the ob- 
served mode, while in our “free” tests, with our much sturdier model, excitation 
occurred at the lower half shell. 

Apart from m = 2-10 modes, we observed one 4-12 mode (with f = 695, see Figure 
lla) D Furthermore, Figure 16, f = 676, would seem to indicate that a complete 
m = O-10 mode is possible in principle. 
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Modal Deflections 

Some of the records of meridional modal shapes, Figures 14 and 15, have already 
been referred to in the discussions of pneumatic resonances and of the first overtone 
mode, and the manner of presentation has been explained there. Brief remarks on the 
remaining records are here added. 

Figure 15a compares two m = 4 modes at widely different frequencies. At the 
higher frequency, there are more waves, and in consequence A+ is smaller; approxi- 
mation of each half-wave by a sine-curve is more appropriate in that the points of zero 
bending curvature coincide better with the nodes (zeros). The overall displacement 
amplitude is much reduced at the higher frequency. 

Figure 15c shows three examples (one mode for each p) of the set of modes that was 
observed around f = 520. These samples, in particular the curve for p = 15 with its 
two closely spaced nodes at + = 22O and 35O (compare Figure 16) illustrate again that, 
in applying Eq (13)) one should perhaps define AC+ as the distance of consecutive points 
of zero modal curvature rather than as the distance between observed nodal lines. 

Figure 15d shows four m = 2-10 modal deflections, all measured along the meridian 
opposite the shaker meridian and therefore between two eyes. A good deal of similarity 
exists between the four curves. The halfwaves that include the point + = O” are reason- 
ably well sinusoidal. The fact that the eyes are positioned within the +-range of this 
halfwave in the case f = 610 but not in the cases f = 592 and f = 644, see Figure 16, does 
not produce any obvious difference in Figure 15d. 

Interpretation of “Free” Model Results 

Having commented on the records that were taken during the tests in the preceding 
sections, we are finally ready to review Figure 11, the attempt to correlate analytical 
curves, Eq (13)) and experimental results. 

of the analytical curves, only a few are drawn for p = 15, and none for p = 6. All 
minima are shown, however, and are emphasized. Thus the missing curves are readily 
constructed to the accuracy that is required for the present discussion. To the left 
are the predicted pneumatic resonances, Eq (16). With each experimental point, m 
and type of symmetry are indicated whenever this information is available. 

The overall impression of Figure lla, the “free” model correlation, which we are 
going to discuss first, is that the test points tend to lie in a band across this figure 
and that this band roughly coincides with the band of minima. There are deviations from 
this overall impression, a number of test points to the left of the band above f = 600, 
and a number of test points to the right at f z 440 and f = 520. 

Before remarking on these “deviations”, we have to emphasize that the A&value 
that has been allocated in Figure llb to a given observed resonance is somewhat arbi- 
trary in each case. The correlation had not been planned originally, and the tests had 
not been performed with it in mind. After the test program had been completed, A+- 
values, here defined as the average distance between nodal lines near the crown, were 
estimated on the basis of photographs and of notes on test observations. The modal 
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deflection readings, Figure 15, were not much relied upon because they were not avail- 
able for all modes and because some circumferential nodes are not circles (e.g., Fig- 
ure 16, f = 606). With nodes unequally spaced (e. g. , Figure 1%) f = 519) a mean value 
was taken. In a number of cases, A+ was estimated to the nearest 5O only, as is evi- 
dent from Figure lla. In other cases, the estimate was somewhat more accurate, but 
none should,be taken to be reliable to better than f 2O. 

The observation that the test points tend to lie within the band of minima is not a 
prediction of Eq (13) but is simply an observation (for which we gave an intuitive ex- 
planation) . Equation (13) is a tentative prediction that each test point should lie some- 
where along its m-curve. Quite often, this prediction is seen to be well fulfilled; in 
particular, it is reasonably well fulfilled by the test points outside the band of minima 
to the upper left. On the other hand, there are test points that do lie within the band 
of minima but do not lie near their m-curve. Anexampleisthef=697, p=O, m=4 
test point for which Figure 15a shows the deflection curve. As this point is quite close 
to anotherp = O-point with? however-, m = 4-12. one n$ght suspect that the first point 
might have been, in reality, also an m = 4-12 point. The photographic record (not- 
shown) contradicts this suspicion. 

This brings up another problem. A number of m = 2-10 points are seen to lie 
close enough to their respective m = 10 curves. However, in the crown range, where 
A+ was measured, some of these resonances looked rather like perfect m = 2 modes, 
e.g., Figure 16, f = 592. The conclusion to be drawn from this last observation is 
that one should examine the nonclassical modes in considerable more detail than was 
possible within the present program. 

We turn now to the deviations to the right, at lower frequencies. First, it is 
interesting indeed that there were m = 4 modes at about the same frequency, f = 440, 
at all pressures p, and two each at p = 0 and p = 15. There was in two of these modes 
so much distortion that m could not be determined with certainty; these points are 
identified as m = 4(6). Both facts would seem to indicate a pneumatic cause. An m = 4 
pneumatic mode is indeed predicted for f = 443 ; however, the pneumatic activity visible 
in Figures 12b-1 and 12c-1 corresponds, in its frequency f, better to the pneumatic 
m = 6 mode at f = 426. There is thus a contradiction. Unfortunately, because of the 
distortions, the meridional modal shape had not been measured and is not available for 
examination for pneumatic effects. 

Note the sequence of reasonably “1egitimate”m = 6 modes, f = 395 for p = 0, f = 440 
for p = 6 (distorted) and f = 520 for p = 15. The m = 4 modes around f = 520, again with 
m = 4, form the second deviation. Here there is no predicted pneumatic m = 4 mode 
nearby. No pneumatic activity is shown in Figure 12b-1, only slight activity in Fig- 
ure 12c-1. The meridional deflection shapes, Figure 15c, do not indicate any obvious 
pneumatic effects either; also, these modes are (relatively) clean. On the other hand, 
their meridional mode shapes, Figure 15c, are far from being sinusoidal, and it can 
be argued that their effective A+ are smaller than the A$ shown in Figure lla. 

The overall conclusion to be drawn from Figure lla is that Eq (13) forms a helpful 
basis for correlating the observed vibration modes; that there are exceptions, as was 
to be expected; that for unknown reasons multiple exceptions occurred at certain fre- 
quencies , independent of the internal pressure p; that in general, however, identifiable 
vibration modes tended to appear within the band of minima of the analytical curves. 
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Observed modes that are not shown in Figure lla because the observed A+ is out- 
side, to the right, of the range shown in Figure lla are: the first overtone mode, 
Figure 14, and several modes that were clearly products of pneumatic activity, namely, 
m=O, f = 340 modes that appeared at all pressures p, compare Figure 15b; the f = 886 
mode, p = 6, that is also shown in Figure 15b; plus two modes with p = 15, f = 606 and 
f = 672. (Of the latter, the first, m = 2, may be the predicted pneumatic mode at 
f = 584; the second was too much distorted for proper identification. ) Thus, the number 
of observed modes with definite pneumatic effects increased with p. 

We should also try to correlate the test results with Liepins’ analytical prediction, 
Figure 10. The first identified m = 0 mode in Figure lla is f = 649 (p=O). With the 
“fixed” model the lowest m = 0 mode was f = 489 (p=O), Figures 15 and llb. Both 
frequencies lie within the range of plausible interpolations in Figure 10. Unfortunately, 
it would be difficult to make a more precise statement. 

Interpretation of “Fixed” Model Results 

The test observations with the “fixed” model are shown in Figure llb. In this 
earlier test program often only the number, N, of circumferential nodes on the upper 
shell, not their position, had been noted; thusA+is often unknown. These resonances 
are listed to the right of Figure llb. The number N is given, but the reservation that 
was made in the general discussion of overtone modes does apply. 

The overall impression of Figure llb is the same as that of Figure lla. The de- 
tails differ, in particular in the lower frequency range. There are fewer modes around 
f = 440; there is, however, again a set of m = 4 or 6 modes around f = 520. More 
modes are recorded near the upper frequency limit than in Figure lla. Partially, this 
may be due to the fact that, in testing the “free” model, we placed more emphasis on 
recording details in the lower and medium frequency ranges than on re-recording the 
upper range, where the quantitative difference was generally small; compare, e. g. , 
Figure 16, f = 856 and f = 862. It seems, however, as shown in the same two photo- 
graphs, that, while there was usually harmonic distortion with the “fixed” model due to 
coupling with the support structure, the amount of phase shift, that is, of secondary 
motion at the excitat.ion frequency, was smaller, and that in consequence mode identifi- 
cation was easier with the “fixed” model. 

An explanation of the last point would seem to be that slightly different resonance 
frequencies of upper and lower shell led to the phase shifts on the “free” model, while 
vibratory signals between the two shell halves were largely suppressed on the “fixed” 
model. 

.25 



CONCLUSIONS 

The esperimental model of a complete circular torus shell corresponded in its open- 
ing ratio to a space booster tank. It was vibration tested in its “free” condition, and 
in a “fi\;ed” condition where it was supported along its outer circumference. In both 
conditions, the measured fundamental mode response, both frequency and modal deflec- 
tion, agreed well with the predictions obtained from static asymptotic analysis by 
means of the Rayleigh quotient. 

The first overtone mode was a split mode; in both its components, the resonance 
frequency first increased and then decreased as the model was pressurized. The re- 
sponses , frequency and nodal pattern, at higher resonance frequencies were reasonably 
\\.ell correlated by means of curves derived from cylindrical shell analysis; in partic- 
ular ? it Ivas found that identifiable modes appeared usually within the band of minima 
of these curves. Intuitively, there is a good reason for this coincidence. There were 
also interesting exceptions. 

Of particular interest were two unexpected occurrences: nonclassical modes and 
pneumatic effects. In the former, many (usually eight) more meridional modal lines 
esisted on the inner part of the torus than on the outer part. Pairs of the additional 
nodes formed nodal loops. It appeared that these loops could shift in meridional 
direction with relative ease, but always stayed within the range of negative Gaussian 
curvature of the shell. 

The other unexpected occurrences were shell vibrations showing large pneumatic 
effects. Acoustic resonances of the air inside the model were shown to exist by replac- 
ing part of the air inside the model by helium. There were circumferential pneumatic 
modes, transverse pneumatic modes, and combinations. There were corresponding 
responses of the model as a whole, and modes that were obviously distorted by pneu- 
matic pressures, There were also secondary motions, recognizable as continuous 
phase shifts in the response along the shell surface, which became increasingly pro- 
nounced as the internal pressure was increased. 

Not all questions that were posed by these unexpected occurrences could have been 
resolved within the limitations of the present program, and, in these respects, this 
program has to be considered as preliminary. In a future program, all testing should 
he done twice, with two different gases inside the model. Alternative excitation tech- 
niques (e . g. , air jet shaker) should be tried in order to eliminate possible doubts in 
this direction. Attention should be concentrated on specific questions, as the detailed 
topography and the sensitivity of nonclassical modes, and furthermore on closer 
examination of those modes which, in the present evaluation, seemed to fall outside the 
band that is formed by most of the resonances. 

Martin Company 
Baltimore, Maryland 

December 15, 1966 
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APPENDIX 

List of Test Instrumentation Items 

Electrodynamic Shaker. Ling model LPM-25 with force rating of 225 lb, * armature 
weight (including forcing bar) of 0.18 lb, locked armature resonance of 9000 cps, and 
stiffness of armature carrying flexure (no voltage applied) of 8.5 lb/in. 

Power Amplifiers (2). Optimation, Inc. model PA 250 AC. 

Distance Detector. Photocon Research, Inc. model PT-5 with 0.25-in. diameter 
probe. 

Hand-Held Probe. Dynamic Devices, Inc. model 101. This is a self-generating veloc- 
ity type device. 

X-Y Plotter. F. L. Mosley model 5s. 

Logarithmic Converter. F. L. Mosley model 60B. 

Frequency to Voltage Converter. Vidar model 322 with a 2000 cps insert. 

Variable Pass Electronic Filter. Spencer-Kennedy Labs model 308A. 

Frequency Counter. Beckman Instrument Co. model 554. 

Cathode Ray Oscilloscopes (2). One Tektronix model 541A with type 53/54B plug-in 
unit, and one Hewlett-Packard model 130B. 

Audio Frequency Signal Generators (2). (Audio Oscillators). One Hewlett-Packard 
model 200 and one Hewlett-Packard model 200 CD. 

Bridge Balance and Selector Boxes (3). Young Testing Machine Co. These devices 
were used with the strain gages. 

Bridge Balance Box. Manufactured by the Martin Co. and used with the pressure 
transducer. 

D. C. Digital Voltmeter. Electra-Instruments, Inc. model 8409 MB. 

A. C. Digital Voltmeter. Electra-Instruments, Inc. model 139 MD. 

High Gain Differential Amplifiers (2). Dana Laboratories, Inc. model 2003. 

D. C. Power Supply, Power Designs, Inc. model 5005R. 

Mercury Manometer. Meriam Instrument Co. model A-338. 

*l lb = 0.454 kg; 1 inch = 2.54 cm; 1 cps = 1 Hz; 1 psi = 0.0703 kg/cm2. 
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Pressure Transducer. Consolidated Electrodynamics Corp. model 4-312, having a 
pressure range of 0 to 50 psia and diaphragm resonance at 9300 cps. 

Pressure Regulator. Foxboro Corp. type 20 Airdron Regulator. 

Strain Gages (58). Budd Co. model C12-121-R2TC-350. 

Frequency Analyzer. Bruel and Kjaer Inc. model 2105. 



TABLE I 

MODEL PARAMETER VALUES AND NOTATION 

Model parameter values used in analyses, obtained by averaging measured values 

R 

a 

hR 

E 

V 

P-g 

g 

C 

f 

P 

EO 

meridional radius 11.5 in. = 29.21 cm 

opening ratio 1.365 = 1.365 

shell wall thickness 0.0627 in. = 1.59 mm 
(uniform part of shell) 

Young’s modulus 1.07 x lo7 lb/in. 2 = 7.52 x lo5 kg/cm’ 

Poisson’s ratio 0.32 = 0.32 

Other quantities used in analyses 

shell material weight 0.103 lb/in. 3 = 2.85 kg/dm3 

gravity acceleration 386.1 in. /sec2 = 9.807 m/sec2 

speed of sound in air 1132 ft/sec = 345 m/set 

(in pure helium 3312 ft/sec = 1010 m/set) 

Other notation items 

frequency 1 cps = 1 Hz 

internal over-pressure 1 lb/in. 2 = 0.0703 kg/cm2 

reference strain = p/Eh 



'free" 

'fixed" 
10 
lubweight 

'fixed" 
with 
lubweight 

p (lb/in.2 ) 

P (kg/cm21 

P" 

k 

S (lb/in.) 

S (kg/cm) ~ -.. ..__ 
f 0 test 

f 0 talc. 

AfO 

f 0 test 

f 0 talc. 

AfO 

f 
0 test 

f 0 talc. 

AfO 

TABLE II 

FUNDAMENTAL FREQUENCIES 

--I 
I 

-~ 

0 

0 

0 

7.38 

4583 

818 

48.7 

49.0 

+o. 3 

33.8 

34.8 

+1.0 

24.1 

24.3 

+o. 2 

3 

0.211 

0.124 

7.16 

-~ 
38.2 

6 

0.422 

0.236 

6.96 

7226 

1290 
__-- 
61.3 

61.6 

co. 3 

42.6 

43.8 

+1.2 
-. - 
30.1 

30.6 

+o. 5 

9 

0.633 0.844 

0.332 0.415 

6.79 6.64 

_. . -. ._. 
46.2 k9.2 

12 15 

1.055 

0.485 

6.50 

10612 

1895 

75.8 

74.9 

-0.9 

52.0 

53.1 

+l. 1 

37.0 

37.1 

+o. 1 

18 

1.266 

0.544 

6.36 

54.5 
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